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UNIT-1 

UNITS, DIMENSIONS & CONVERSION FACTORS 

Unit  

All meaningful measurements in engineering science consist of at least two parts - a 

magnitude and a unit. Thus the measurement 3 metres consists of the magnitude or 

number, 3, and the unit, in this case the metre. 

Entity  

A unit is measure of a certain physical 'entity', for example the centimetre unit is a 

measure of the entity length, the kilometre/hour a unit of the entity speed, and so on. 

Entity Inter-Relationship - Dimensions  

For any particular physical system under review, it is convenient to class the entities 

which occur in it as either   fundamental or   derived. The fundamental entities are 

those which are selected - purely on convenience grounds - as basic buiding blocks of 

the system. The derived entities are then expressible as combinations of the 

fundamentals raised to certain powers - we say that the derived entities 'have certain 

dimensions'in the fundamentals. 

Suppose for example a geometric system was being examined - a system comprising 

the entities length ( denoted by [L] ), area [A], volume [V] and angle [φ]. Suppose also 

that length is chosen to be the fundamental entity, in which case area may be conceived 

as a length multiplied by a length - this is written dimensionally as   [A] = [L]*[L] = 

[L
2
] - that is   the derived entity area has the dimensions of length 

squared. Similarly   [V] = [A]*[L] = [L
3
] and   [φ] = [L]/[L] = [L

0
] = [ ] since an angle 

may be thought of as the arc length of a circular sector divided by its radius. Entities in 

which the powers of the fundamentals are zero are termed   'dimensionless', written [ ]. 

Alternatively, if volume had been selected as fundamental, then   [L] = [V
1/3

],   [A] = 

[V
2/3

] while   [φ] remains dimensionless in terms of any fundamental. 

Homogeneity of Equations  

The equation :     1 kilometre + 2 litres = 3 seconds   is obviously meaningless, and is 

so because the terms are of different entities. An equation must be   entity 

homogeneous - ie. the terms of the equation must all be of the same entity - before the 

arithmetic   1 + 2 = ? can be carried out. 

Entity homogeneity is not always so obvious as in the above example. Suppose we set 

out to calculate the area 'A' of the Earth's surface which is visible from an aeroplane 

flying at height 'h' above the surface, the Earth being assumed spherical of radius 'r'. 

Suppose we came up with the expression :   A = 2π h r
3
 / (r+h). Choosing length [L] as 



the fundamental entity, then the dimensions of the RHS of this equation are : 

[L
0
]*[L

1
]*[L

3
]/([L]+[L]) = [L

4
]/[L

1
] = [L

3
] since 2π may be regarded either as a pure 

number or as an angle, both of which are dimensionless. 

The LHS of the equation, being an area, has the dimensions [L
2
], so the dimensions of 

the two sides of the equation are different - the equation is not dimensionally 

homogeneous and must therefore be wrong - we can spot the error immediately. The 

necessity for entity homogeneity leads to a powerful technique known as   Dimensional 

Analysis for actually setting up the form of the equations governing any physical 

system, as opposed to the mere checking above. We shall not examine the technique 

further here. 

Consider now the equation :     1 centimetre + 2 metres = 3 kilometres.   This too is 

obviously incorrect even although it is homogeneous in the entity length. It is wrong 

because the units of the various additive terms are not identical - the equation is 

not   unit homogeneous and so   1 + 2 ≠ 3. The process of homogenising this simple 

equation will be second nature to the reader, however the underlying principles of 

homogenisation still apply, and must be spelt out in detail, when dealing with more 

complicated functions. The technique is outlined below. 

Conversion Factors  

Conversion factors are dimensionless numbers which inter-relate, or convert, different 

units of the same entity. Thus '100 centimetres/metre' and '60 second/minute' are 

familiar conversion factors - their dimensions are respectively [L]/[L] = [ ] and [T]/[T] 

= [ ] where 'T' is the entity time.  

Considering the above equation :     1 cm + 2 m = ? again,   the homogenising 

procedure is : 

 

Note that before any addition is carried out, each term is brought to a common unit by 

successive application of conversion factors. Whether these multiply or divide is seen 

by inspection of the units - in the present case they are applied to eliminate 'cm' and 'm' 

in turn. The resulting common unit of the additive terms is 'km', though 'm' is much 

preferred as it eliminates any power of 10 - ie. the most succint answer is 2.01 m. 

Introduction to Unit Systems  

Although the Systeme International d'Unites (SI) is now firmly established as the 

standard system of units in this country, the US system - which is similar to the old 

Imperial System - is still very common in the mineral and resource processing fields, 



and looks likely to remain so for some time. This, and the necessity to interpret 

overseas texts, means that engineers must be fluent in systems other than the SI. We 

shall examine the SI and the Imperial below, with a view to illustrating the techniques 

of converting from any one system to any other.  

Three fundamental entities only are a necessary foundation for Mechanics (though 

Thermodynamics and Electricity each requires an additional fundamental). Those 

usually selected - on the basis of simplicity - are length [L], mass [M] and time [T], 

and their units are   defined arbitrarily. The units of the derived entities are then based 

on these fundamental units. 

Newton's Second Law  

This law, which states that :    force = mass * acceleration     is the foundation of 

Mechanics, and must be homogeneous in both entities and units. Acceleration is 'time 

rate of change of velocity', that is a velocity increment divided by a time increment - 

velocity itself being displacement per unit time. So [acceleration] = ( [L]/[T] )/[T] = 

[LT
-2 

] where   L and   T are fundamental. For entity homogeneity therefore, Newton's 

Law requires that the dimensions of the derived entity force,   F, are given by :     [F] = 

[M]*[LT
-2 

] = [MLT
-2 

].  

For unit homogeneity on the other hand :     units of force = units of mass * units of 

length / (units of time)
2
     and to ensure this the equation is written :     force = 

mass * acceleration / gc     where gc is a   dimensionless conversion factor inserted to 

preserve unit homogeneity in whatever system is being used - that is each system is 

characterised by its own unique gc. 

It will be seen below that in some systems the magnitude of gc equals the magnitude of 

standard gravitational acceleration - this results from the manner in which the unit of 

the derived entity force is defined in the system and is NOT due to any supposed direct 

dependence of gc on gravity - gc has got nothing directly to do with gravity - it is 

simply a conversion factor. 

The Systeme International  

In this system the standard units of the fundamental entities are defined as follows : 

  mass - kilogram (kg) : the mass of an arbitrary lump of platinum 

    length - metre (m) : an arbitrary number of wavelengths of atomic krypton 

radiation (nominally an even fraction of the Earth's 

equatorial circumference) 

  time - second (s) : an arbitrary fraction of the year 1900 

The unit of the derived entity force is called the Newton (N) and is defined as the force 

necessary to produce an acceleration of 1 m/s
2
 in a mass of 1 kg. The corresponding 



value of gcfollows from the necessary homogeneity of Newton's Law :  

    gc = ma/F = 1 {kg} * 1 {m/s
2 
} / 1 {N} = 1 kg.m/N.s

2
 

The weight, W, of a mass of 5 kg for example, is the force exerted by the Earth on the 

mass, accelerating the mass if not equilibrated at the acceleration of gravity (for which 

the standard value is 9.81 m/s
2 
). So:  

    W = ma/gc = 5 {kg} * 9.81 {m/s
2 
}/ 1 {kg.m/N.s

2 
} = 49 N  

The reader is advised to follow through the cancelling of units here, in a manner 

similar to the '1+2=?' equation above. Systems like the SI in which the magnitude of 

gc is unity are called 'absolute' systems. 

The Imperial System  

In the Imperial System the unit of mass, the 'pound' (lb), and the unit of length, the 

'foot' (ft), are currently defined in terms of SI units - conversion factors of 2.205 lb/kg 

and 0.3048 m/ft apply - while the unit of time is identical to the SI second.  

The unit of force, the 'pound force' ( lbf ), is defined as the weight of a pound mass 

under standard gravity conditions when the acceleration is 32.174 ft/s
2 
. The value of 

gc for the Imperial system is found in a manner identical to the above :  

    gc = ma/F = 1{lb} * 32.174 {ft/s
2 
}/1 {lbf} = 32.174 lb.ft/lbf.s

2
 

The weight of a 5 lb mass under standard gravity conditions is therefore :  

    W = ma/gc = 5 {lb} * 32.174 {ft/s
2 
}/32.174 {lb.ft/lbf.s

2 
} = 5 lbf  

Again, the reader should confirm manipulation of the units. Systems like the Imperial 

in which a mass's weight is equal numerically to the mass itself are called 'gravitational 

systems'. US notation differs from the Imperial in using the abbreviations 'lbm' for 

pound mass, and 'lb' for pound force. 

Suppose it is required to find the weight of a body, WM, at a point on the Moon where 

the gravitational acceleration is 5.2 ft/s
2 
, the body weighing 3 lbf under standard Earth 

gravity conditions. From the above, we see immediately that the mass of the body is 3 

lb, so, using the last equation  

    WM = ma/gc = 3{lb} * 5.2{ft/s
2 
}/32.174 {lb.ft/lbf.s

2 
} = 0.48 lbf 

Conversion of force from one system to another is usually most easily carried out by 

invoking the gc factors of the two systems. Thus to find the Imperial equivalent of 10 

N, we have : 

 



Proceeding from the left, the derived unit in one system (eg. N here) is first reduced to 

fundamental units in that (SI) system, then inter -system fundamental conversion 

factors are used - in numerator or denominator   by inspection - to convert to 

fundamental units in the second system (Imperial here) before final reduction to the 

derived units in the second system via that system's gc. This approach is quite general 

and may be used for derived entities other than force. 

Energy  

All forms of energy - be they mechanical, thermal, electrical, nuclear etc. - are 

equivalent, that is they have the same dimensions. The two forms of most immediate 

interest to us are thermal energy or 'heat', Q, and mechanical energy or 'work', W 

(whose symbol should not be confused with that of weight). Their equivalence is 

expressed in the First Law of Thermodynamics :   W = Q (briefly, this will be 

formulated more rigorously in Thermodynamics). 

Work, a derived entity, is conceived as that which is done when a force moves its point 

of application, and is the product of the force and the distance moved in the direction 

of the force, so :  

    [energy] = [force] * [distance] = [MLT
-2 

] * [L] = [ML
2 
T

-2 
]  

The unit of work, energy and quantity of heat in the SI is the 'Joule' { J } which is 

defined as the work done when a force of 1 N moves its point of application through a 

distance of 1 m - ie. a conversion factor of 1 J/Nm applies.  

In the Imperial system, different units are used for thermal and mechanical energies, so 

a conversion factor 'J' is necessary in the First Law statement, thus : W = JQ. 

J is sometimes referred to as 'the mechanical equivalent of heat', however it's just 

another conversion factor - analogous to Newton's gc but for the entity 

energy/work/heat. The Imperial unit of work is the foot-pound force { ft.lbf }, and the 

unit of heat is the British Thermal Unit { BTU }. Using these units, J has the value of 

778 ft.lbf/BTU (approx). So, from the First Law, the amount of work which is 

equivalent to 10 BTU of heat is :  

    W = 778 { ft.lbf/BTU } * 10 { BTU } = 7780 ft.lbf 

When inserting values into algebraic equations, the reader is strongly advised to adopt 

the technique used above, in which : 

 the units associated with each number are written underneath the number 

 a running check of the units is kept so that placement of conversion factors, in 

numerator or denominator, can quickly be determined. 

 

 



 

V-BELT DRIVES 

 

The great majority of 

mechanical power 

transmission applications 

involve rotating shafts, since 

rotation is continuous and 

the shafts / mountings are 

cheap relative to other means 

of power transmission. 

Matching a prime- mover to 

a load thus involves 

transformation of power 

between shafts - usually 

from a high speed / low 

torque drive shaft, through a 

speed reducer of ratio   R ≥ 

1, to a low speed / high 

torque load shaft. So far, we 

have considered only electric 

motor prime movers, with 

industrial load speeds of the 

order of 10 Hz - however the range of torques and speeds encountered in practice is 

much wider than this viewpoint, as this diagram from Palmgren   op cit suggests :- 

As has been noted, speed reducers are employed almost invariably to amplify torque 

rather than to reduce speed. The two most common speed reduction mechanisms in 

industry are belts (usually V-belts) and gears - though chains, hydrostatic transmissions 

or other drives may be used. 

The factors other than cost 

which must be borne in 

mind when choosing a 

reducer are listed here -

 however shock absorption 

capacity, distance between 

shaft centres, accuracy 

required of shafts and mountings, tolerable vibration levels and so on may also need to 

be considered.  

The efficiencies of belts are generally less than those of gears - that is why belts are not 

found in the main drive train of road vehicles where fuel economy is critical. 

 

A rotary cement kiln 

B container ship gas turbine 

C electric power generator 

D diesel engine on ferry 

E caterpillar 

F windmill 

G refrigeration compressor 

H Volvo 340 automobile 

I washing machine 

J windscreen wiper motor 

K hand power tool 

L truck turbocharger 

M timer clock 

N electric razor 

O gyroscope 

P recording cylinder 

Q dentist's drill 



The diagram below compares the kinematics and kinetics of a pair of mating spur gears 

with those of a belt wrapped around two pulleys. The gears are represented by their 

pitch cylinders which roll without slip on one another, slip being prevented by 

the   positive drive - ie. by 

the meshing teeth.  

The transfer of power 

between gears is enabled by 

the normal action/reaction 

force at the tooth contact - or 

more particularly by the 

tangential component of this 

force,   Ft, whose moment 

about the centre of each free 

body equilibrates the shaft 

torque   T ( assuming 

constant velocity ). Friction 

plays only a minor role - inescapable and deleterious but subsidiary nonetheless.  

The transfer of power in a belt drive on the other hand relies critically on friction. The 

tensions   Fmin & Fmax in the two  strands ( the nominally straight parts of the belt not in 

contact with the pulleys ) cause a normal pressure over the belt- pulley contact, and it 

is the corresponding distributed friction whose moment about the pulley centre 

equilibrates the shaft torque   T - provided gross slip of the belt on the pulley surface 

does not occur due to friction breakaway. 

Ideally, for gears and for belts, the speed reduction ratio and the torque amplification 

ratio are each equal to the radius ratio, so that the output power equals the input power 

and the efficiency is 100%. The speed ratio across a real pair of gears always equals 

the ideal ratio because of the positive drive, however sliding friction results in a torque 

ratio which is less than ideal. A real belt drive is just the opposite - the torque ratio 

equals the ideal ratio ( as may be seen from the free bodies ), but   creep results in the 

speed ratio being less than ideal. Creep - not to be confused with gross slip - is due to 

belt elements changing length as they travel between   Fmin & Fmax, and since the pulley 

is rigid then there must be relative motion between belt element and pulley.  

Since power equals the product of torque and (angular) speed, the consequence of the 

foregoing is that efficiencies of real gears and belts are less than 100%. 

Some of the many forms of belt are introduced below. 

Historically,   flat belts made from joined hides were first on the 

scene, however modern flat belts are of composite construction 

with cord reinforcement. They are particularly suitable for high 

speeds. 



Classical banded ( ie. covered )   V-belts comprise cord 

tensile members located at the pitchline, embedded in a 

relatively soft matrix which is encased in a wear 

resistant cover. The wedging action of a V-belt in a pulley groove results 

in a drive which is more compact than a flat belt drive, but short centre V-belt drives 

are not conducive to shock absorption. 

Wedge belts are narrower and thus lighter than V-belts. Centrifugal 

effects which reduce belt-pulley contact pressure and hence frictional 

torque are therefore not so deleterious in wedge belt drives as they are 

in V-belt drives. 

Modern materials allow   cut belts to dispense with a separate cover. The 

belt illustrated also incorporates slots on the underside known 

as   cogging which alleviate deleterious bending stresses as the belt is 

forced to conform to pulley curvature. Cogging should not be confused 

with the teeth on . . . . 

Synchronous or   timing belt drives are positive rather than friction 

drives as they rely on gear- like teeth on pulley and belt enabled 

by modern materials and manufactureing methods. They are 

mentioned here only for completeness - we shall not examine 

them further. 

If a single V-belt is inadequate for power transmission then multiple 

belts and corresponding multi- grooved pulleys are necessary - this 

pulley is equipped with a tapered bush for 

axle clamping without the stress 

concentration associated with a key. The 

rather extreme short-centre drive on the 

left illustrates a 

problem with 

multiple belts - 

how to ensure 

equitable load sharing between flexible belts whose as-manufactured dimensional 

tolerances are significanty looser than those of machined components for example.  

Two types of belt for avoiding mismatched lengths are shown : 

Each component of a V-belt performs a particular function. 

The main load- carrying elements are the tensile members, 

often in the form of longitudinally stiff rayon cords located 

near the centroidal axis of the belt's cross-section, embedded 

in a relatively soft elastomeric matrix whose main purpose is 

to channel the load from the contacts with the groove sides 

into the tensile members.  

The groove semi-angle lies usually in the range   17
o
 ≤ β ≤ 

19
o
. It should be noted that there is a gap ie. no contact at the 

bottom of the groove. Flat belts may be regarded as particular cases of V-belts in 

which   β = 90
o
. 

 



 

V-belts are available in a number of standard cross-sectional sizes, designated in order 

of increasing size A, B, etc, while wedge belts are designated variously as SPA, SPB, 

etc (or α, β etc in the US). Each size is suitable for a particular power range 

as suggested by the carpet diagrams. The regions of applicability for the various sizes 

in these diagrams overlap substantially. 

As the belts are endless, only certain discrete standard pitch lengths are manufactured. 

The power demand very often necessitates a number of matched belts on multi-

grooved pulleys, as illustrated above.  

Discrete dimensions apply also to off- the- shelf pulleys, which are available only with 

certain recommended pitch diameters and number of grooves. A special pulley may be 

manufactured of course - but would cost more than a mass- produced commercial 

product. A pulley is referred to by its pitch diameter - other dimensions including its 

OD are available from suppliers' manuals which should be consulted also for local 

availability. 

A typical V-belt drive is illustrated. The effective (or 

pitch) diameter of the small driveR pulley is   D1 ; 

that of the large driveN pulley is   D2 .  

Before the drive starts to rotate and transmit power, 

an initial tension   Fo is produced in both belt strands 

by the shafts being pulled apart and then locked (eg. 

by a motor on slide rails or by other means).  

Drive commences by the power source applying a clockwise (say) torque   T1 to the 

shaft of the small driveR pulley, causing it to rotate clockwise at a steady 

speed   n1 (rev/s). The tension in the   'tight' upper straight strand will then 

exceed   Fo while the tension in the   'slack' lower strand will become less than   Fo - 

this tension difference applies a torque to the driveN load pulley, equilibrating the load 

torque   T2 while the pulley rotates at uniform speed   n2 , also clockwise. Neglecting 

creep: 

http://school.mech.uwa.edu.au/~dwright/DANotes/V-belts/intro/intro.html#tables
http://school.mech.uwa.edu.au/~dwright/DANotes/V-belts/intro/intro.html#tables


( 1 )       v   =   π D1 n1   =   π D2 n2   ;       speed ratio,   R = n1 / n2 = D2 / D1   ≥   1  

                        where the belt speed,   v, is limited to 30 m/s for the usual cast iron 

pulley material, though higher speeds can be achieved with more expensive builds. V-

belts are designed for optimum performance at speeds of around 20 m/s. 

In the most common V-belt drive design problem, the transmitted power and the speed 

of the small pulley are stipulated, together with a specified range of the speed ratio and 

possibly acceptable ranges of shaft centre distance and of drive life - though if the 

drive is designed by the methods outlined by the Code(s) then its life, though 

presumably commercially acceptable, cannot be evaluated.  

The required drive is specified by a suitable size ( B, or γ, etc), number and length of 

the belt(s), and by the two pulley diameters. We therefore consider two aspects of V-

belt drives : 

 the drive overall geometry, ie. the inter-relationship between centre distance and 

belt length 

 the fatigue life of the belts as dictated by the loading on them, which is in turn 

affected by the drive kinetics and the power 

transmitted through the drive. 

Overall geometry 

V-belt drives are essentially short centre drives. If in 

drive design the centre distance   C is not specified, 

then it should be set at around   2D1 √ (R+1)   but 

preferably not less than   D2 . Since the diameters 

and belt length are discrete variables so also is the theoretical centre distance, though in 

the absence of idlers the nominally fixed centre distance must be capable of slight 

variation by motor slide rails for example, to allow for belt installation and subsequent 

take-up (initial tightening) before rotation commences. This capability also allows for 

manufacturing tolerances on belt length, L. From the geometry :- 

( 2a)       L   =   
π
/2 ( D1 +D2 ) + 2C ( γ sinγ + cosγ )   ;     where     sinγ   =   ( D2 -D1 )/2C 

This is used to find the belt length, L, for given centre distance, C (and pulley 

diameters). Conversely, to find the centre distance corresponding to a certain belt 

length, ( 2a) must be solved iteratively - a very close first approximation is given by :- 

( 2b)     4 C   =   √[ g
2 
- 2( D2 - D1 )

2 
] + g   ;     where     g   =   L - 

π
/2 ( D1 +D2 ) 

The wrap angle (or "arc of contact") on each pulley is evidently :- 

( 2c)       θ1   =   π - 2γ   ;       θ2   =   π + 2γ   ;       θ1 ≤ θ2 



The power transmission capability of a drive is usually limited by the arc of contact on 

the small pulley, and so is reduced by large speed ratios and by short centres - eg. θ1 is 

only about 100
o
 here. 

Any particular cross-section of the belt traverses alternately the slack and tight strands 

and is subject to bending when in way of one of the pulleys, so it is clear that cyclic 

loading and fatigue are prevalent. Before we can look at fatigue however, we have to 

know the belt forces and stresses. These will depend on the belt load and speed - so let 

us now consider the belt kinetics 

1. A belt drive incorporates a small pulley of 100 mm diameter and a belt whose 

length is 1100 mm. For speed ratios of (a) 1.5:1   (b) 2:1   (c) 3.15:1, calculate 

the theoretical shaft centre distance and angle of wrap on the small pulley.  

[ 353, 310, 193 mm]  

  

2. ( a)   Use the belt properties of Table 1 to calculate the basic rating of an A-

section V-belt with two 100 mm diameter pulleys rotating at 4200 rpm. Check, 

using the Code tables.   [ 3.07 kW]  

( b)   If the pitch length of the above belt is 3080 mm, what then is the rating and 

what is the corresponding power correction factor for pitch length? Check this 

last value with the Code.   [ 3.50 kW, 1.14]  

( c)   If the drive in ( a) is required to last for only 10 kh, by what percentage is 

the above capacity increased?   [ 24%]  

  

3. Plot rating versus belt speed, similar to the above rating curves, for an A-section 

belt. Use pulley diameters of 75, 132, 250, 500 and 1000 mm. Superimpose 

upon this, trajectories of constant effectiveness : 20, 40, 60, 80 and 100%. 

Comment upon the effect of pulley diameter on rating as the diameter increases.  

  

4. A V-belt drive employs a single B belt of length 2300 mm, together with 200 

and 400 mm diameter pulleys. The smaller pulley rotates at 1440 rpm.  

( a)   What is the capacity of this drive using the Code method ?   [ 6.04 kW]  

( b)   What is the life of the drive when transmitting 6.04 kW ?   [ 31 kh]  

( c)   Repeat ( a), but use ( 5a) with the standard life of 26 kh.   [ 6.19 kW]  

( d)   Check this last result using the program V-belts.  

( e)   A multi-strand drive, otherwise identical to the above, is required to 

transmit 12 kW with a duty factor of 1.3. Use ( 5a) to determine the number of 

belts required.   [ 2.5]  

( f)   What life may be expected, if 2, or if 3 belts are used ?   [ 5.0, 82 kh]  

  

5. Two 1750 mm long A-section belts are incorporated into 

the drive whose layout is sketched. The wrap angle on 

http://school.mech.uwa.edu.au/~dwright/DANotes/V-belts/kinetics/capacityVariation.gif


the 150 mm diameter motor pulley (1) is 118
o
 and the pulley rotates at 2880 

rpm. The 400 mm diameter driven pulley (2) absorbs the design power of 10 

kW. Pulley (3), of 80 mm diameter, is an idler and absorbs no appreciable 

power.  

Estimate the life of the belts if . . . . .  

( a)   the pulleys rotate clockwise, or  

( b)   they rotate counterclockwise, or  

( c)   the idler is removed and the centre distance between (1) and (2) increased 

accordingly.   [ 6, 0.6, 14 kh ]  

  

6. A 7.5 kW 1445 rpm squirrel cage motor, started direct-on-line, is required to 

drive a machine tool at a speed of around 860 to 870 rpm. Duty is expected to be 

7 hr/day, 5 days/week, 49 weeks/year with 4 years between belt replacements. 

The centre distance should lie within the range 280 to 320mm.  

Select a drive for this duty.  

  

7. Select a suitable hinge location for the pivoted motor drive of the foregoing 

worked example in which an ABB MBT 132M motor transmits 7 kW to a 

launderer through three B2500 belts on 180 and 514 mm diameter pulleys, the 

motor lying vertically under the launderer pulley.  

  

8. A blower absorbs 3.5 kW at its design speed of 650 rpm, and is equipped with a 

260 mm diameter, 90 mm wide flat pulley. It is proposed to drive it by a pivoted 

motor, V-flat arrangement.  

Select a squirrel cage motor and finalise the drive, including pivot location.  

  

9.  A squirrel cage motor is usually equipped with deep groove 

ball bearings, but life considerations might require replacement 

of the drive-end bearing by a larger capacity roller bearing 

when :  

    - the shaft load is heavy due to a small belt pulley for 

example, or  

    - the load overhang ('x' in the diagram) is large.  

An ABB motor t  

10. ype M2BA 280 SMA delivers 75 kW at 

1485 rpm via a fully loaded belt drive 

comprising 5 SPB 3150 belts on 212 and 

630 mm diameter pulleys at 889 mm 

centres. From catalogues   [ABB, Fenner] the pulley width   w = 102 mm, the 

motor shaft length   E = 140 mm, and shaft radial loads   F corresponding to two 

  life (kh)     40     63 

  F0 at x=0 (kN)   7.32     6.29   

  FE at x=E (kN)   6.18     5.31   



different bearing lives at two load positions along the shaft are as tabulated :-  

Will the drive-end ball bearing last for the target life of 25 kh or is a roller 

bearing needed?  

  

11.  This concerns part-load belt tensions and components with 

different load-life equations.  

Select a squirrel cage motor and fixed centre belts to drive an 

agitator at about 700 rpm for 1 kh per annum. The power 

demand varies cyclically as shown and a 3-year belt 

replacement period is acceptable.  

The drive should be compact, but not to the extent that the motor's usual ball 

bearings have to be replaced by roller bearings.  

For the purposes of this problem, motors' maximum shaft loads tabulated in 

the Motors chapter refer to loads at the end of the shaft (FE of the previous 

problem), to bearing lives of 40 kh, and to a load-life index of n = 2.5. 

 

UNIT-2 

SPUR GEARS 

 

Gears are used to transmit power between shafts rotating usually at different speeds. 

Some of the many types of gears are illustrated below. 

 

 

 

A pair of   spur gears for 

mounting on parallel shafts. 

The 10 teeth of the 

smaller   pinion and the 20 

teeth of the   wheel lie 

parallel to the shaft axes 

A   rack and pinion. The 

straight rack translates 

rectilinearly and may be 

regarded as part of a wheel 

of infinite diameter 

Like spur 

gears   helical gears connect 

parallel shafts, however the 

teeth are not parallel to the 

shaft axes but lie along 

helices about the axes 

http://school.mech.uwa.edu.au/~dwright/DANotes/motors/steady/motorData.html


 

 

 

Straight   bevel gears for 

shafts whose axes intersect 

Hypoid gears - one of a 

number of gear types for 

offset shafts 

A   worm and wormwheel 

gives a large speed ratio but 

with significant sliding 

In order to demonstrate briefly the development of gear drives, from first principles 

through to safety implications, we consider here only spur gears. Knowledge of these is 

fundamental to understanding the behaviour of geometrically more complex types, 

including helical gears 

which are generally 

preferred to spurs since 

they are more compact 

and smoother in 

operation, thus 

permitting higher speeds. 

A typical commercial 

gearbox is shown with 

its cover removed. It 

demonstrates that it is 

usually more attractive 

economically to split a 

larger speed ratio into a 

number of stages (pairs 

of gears) rather than to 

effect it with a single 

pair. There are three 

stages here - the first 

spiral bevel pair is 

followed by two helical 

pairs.  

A couple of features of the box are immediately apparent : 

http://school.mech.uwa.edu.au/~dwright/DANotes/gears/intro/gearboxBIG.jpeg


 compactness - shafts are short and simply supported where practicable, with 

gears located as close as possible to bearings in order to minimise shaft bending 

 sturdiness increasing from input through output - the sizes of input & output 

shafts, and second & third stage gear teeth, should be compared. 

A pair of meshing gears is a power transformer, a coupler or interface which marries 

the   speed and torquecharacteristics of a power   source and a 

power   sink (load). A single pair may be inadequate for certain 

sources and loads, in which case more complex combinations such as 

the above gearbox, known as   gear trains, are necessary. In the vast 

majority of applications such a device acts as a speed reducerin which 

the power source drives the device through the high speed low torque 

input shaft, while power is fed from the device to the load through the 

low speed high torque output shaft.  

Speed reducers are much more common than speed -up drives not so much because 

they reduce speed, but rather because they amplify torque. Thus gears are used to 

accelerate a car from rest, not to provide the initial low speeds (which could be 

accomplished by easing up on the accelerator pedal) but to increase the torque at the 

wheels which is necessary to accelerate the vehicle. Torque amplification is the reason 

for the gearbox's increasing sturdiness mentioned above. 

These notes will consider the following aspects of spur gearing :- 

 overall kinetics of a gear pair (for cases only of steady speeds and loads) 

 tooth geometry requirements for a constant velocity ratio (eg. size and conjugate 

action) 

 detailed geometry of the involute tooth and meshing gears 

 the consequences of power transfer on 

the fatigue life of the components, and 

hence 

 the essentials of gear design. 

 

Some of the main features of spur gear teeth 

are illustrated. The teeth extend from the root, 

or   dedendum cylinder (or 

colloquially,"circle" ) to the tip, or   addendum circle: both these circles can be 

measured. The useful portion of the tooth is the   flank (or face), it is this surface which 

contacts the mating gear. The   fillet in the root region is kinematically irrelevant since 

there is no contact there, but it is important insofar as fatigue is concerned. 

 

Overall kinetics of a gear pair 

http://school.mech.uwa.edu.au/~dwright/DANotes/gears/intro/BrownHelicalsBIG.jpeg


   

Analysis of gears follows along familiar lines in that we 

consider kinetics of the overall assembly first, before 

examining internal details such as individual gear teeth.  

The free body of a typical single stage gearbox is shown. 

The power source applies the torque   T1 to the input shaft, 

driving it at speed ω1 in the sense of the torque (clockwise 

here). For a single pair of gears the output shaft rotates at 

speed ω2 in the opposite sense to the input shaft, and the torque T2supplied by the 

gearbox drives the load in the sense of ω2. The reaction to this latter torque is shown on 

the free body of the gearbox - apparently the output torque T2 must act on the 

gearbox   in the same sense as that of the input torque T1. 

The gears appear in more detail in Fig ( i) below. O1 and O2 are the centres of the 

pinion and wheel respectively. We may regard the gears as equivalent   pitch 

cylinders which roll together without slip - the requirements for preventing slip due to 

the   positive drive provided by the meshing teeth is examined below. Unlike the 

addendum and dedendum cylinders, pitch cylinders cannot be measured directly; they 

are notional and must be inferred from other measurements. 

  

 

One essential for correct meshing of the gears is that the   size of the teeth on the pinion 

is the same as the size of teeth on the wheel. One measure of size is the   circular 

pitch, p, the distance between adjacent teeth around the pitch circle ( ii); thus   p = 

πD/z   where   z is the number of teeth on a gear of pitch diameter   D. The SI measure 

of size is the  module,   m = p/π - which should not be confused with the SI 

abbreviation for metre. So the geometry of pinion 1 and wheel 2 must be such that :  

        D1 / z1   =   D2 / z2   =   p /π   =   m  

                . . . . that is the module must be common to both gears. For the rack 

illustrated above, both the diameter and tooth number tend to infinity, but their quotient 

remains the finite module. 



The pitch circles contact one another at the   pitch point, P Fig ( iii), which is also 

notional. Since the positive drive precludes slip between the pitch cylinders, the 

pinion's pitch line velocity, v, must be identical to the wheel's pitch line velocity :  

        v   =   ω1 R1   =   ω2 R2       ;     where pitch circle radius   R = D/2 

Separate free bodies of pinion and wheel appear in ( iv).  

Ft is the tangential component of action -reaction at the pitch point due to contact 

between the gears. The corresponding radial component plays no part in power transfer 

and is therefore not shown on the bodies. Ideal gears only are considered initially, so 

the friction force due to sliding contact is omitted also. The free bodies show that the 

magnitude of the shaft reactions must be   Ft, and that for equilibrium :  

        Ft   =   T1 / R1   =   T2 / R2     in the absence of friction. 

The preceding concepts may be combined conveniently into :- 

( 1)         ω1 / ω2   =   T2 / T1   =   D2 / D1   =   z2 / z1       ;     D = mz 

That is, gears reduce speed and amplify torque in proportion to their 

teeth numbers.  

In practice, rotational speed is described by N (rev/min or Hz) rather 

than by ω (rad/s). 

The only way that the input and output shafts of a gear pair can be 

made to rotate in the same sense is by interposition of an odd number 

of intermediate gears as shown - these do not affect the speed ratio between input and 

output shafts. Such a gear train is called a   simple train. If there is no power flow 

through the shaft of an intermediate gear then it is an   idler gear. 

A gear train comprising two or more pairs is 

termed   compound when the wheel of one stage is mounted 

on the same shaft as the pinion of the next stage. A 

compound train as in the above gearbox is used when the 

desired speed ratio cannot be achieved economically by a 

single pair. Applying ( 1) to each stage in turn, the overall 

speed ratio for a compound train is found to be the product 

of the speed ratios for the individual stages. 

Selecting suitable integral tooth numbers to provide a specified speed ratio can be 

awkward if the speed tolerance is tight and the range of available tooth numbers is 

limited. Until the advent of computers allowed such problems to be solved by iterative 

trials, techniques based on   continued fractionswere used. Appendix A is provided to 

illustrate the concepts and advantages of continued fractions and attendant Padé 

approximations - this is for general interest, not just for gears. 

http://school.mech.uwa.edu.au/~dwright/DANotes/gears/appendices.pdf


Unlike the above gearbox, the input and output shafts are coaxial in the train illustrated 

here; this is rather an unusual feature, but necessary in certain change speed boxes and 

the like. 

  Epicyclic gear trains 

An epicyclic train is often suitable when a large torque/speed ratio is required in a 

compact envelope. It is made up of a number of   elements which are interconnected to 

form the train. Each element consists of the three   components illustrated below : 

 a   central gear ( c) which rotates at angular velocity   ωc about the fixed axis O-

O of the element, under the action of the torque   Tc applied to the central gear's 

integral shaft; this central gear may be either an external gear (also referred to as 

a sun gear) Fig 1a, or an internal gear, Fig 1b 

 an   arm ( a) which rotates at angular velocity   ωa about the same O-O axis 

under the action of the torque,   Ta - an axle A rigidly attached to the end of the 

arm carries 

 a   planet gear ( p) which rotates freely on the axle A at angular velocity   ωp, 

meshing with the central gear at the pitch point P - the torque   Tp acts on the 

planet gear itself, not on its axle, A. 

 

    

 



 

The epicyclic gear photographed here without 

its arms consists of two elements. The central 

gear of one element is an external gear; the 

central gear of the other element is an internal 

gear. The three identical planets of one 

element are compounded with ( joined to ) 

those of the second element. 

We shall examine first the angular velocities 

and torques in a single three-component 

element as they relate to the tooth numbers of 

central and planet gears,   zc and zp respectively. The kinetic relations for a complete 

epicyclic train consisting of two or more elements may then be deduced easily by 

combining appropriately the relations for the individual elements. 

All angular velocities,   ω, are absolute and constant, and the torques,   T, are external 

to the three-component element; for convenience all these variables are taken positive 

in one particular sense, say anticlockwise as here. Friction is presumed negligible, ie. 

the system is ideal. 

Separate free bodies of each of the three components - including the torques which are 

applied one to each component - are illustrated in Figs 2a and 2b for the external and 

internal central gear arrangements respectively. Also shown are the shaft centre   O and 

axle   A, the radii   Rc& Rp of the central and planet pitch cylinders, the radius of the 

arm   Ra. 

There are two contacts between the components : 

 the planet engages with the central gear at the pitch point P where the action / 

reaction due to tooth contact is the tangential force Ft, the radial component 

being irrelevant; 

 the free rotary contact between planet gear and axle A requires a radial force 

action / reaction; the magnitude of this force at A must also be   Ft as sketched, 

for equilibrium of the planet. 

With velocities taken to be positive leftwards for example, we have for the external 

central gear : 

o geometry from Fig 2a :       Ra   =   Rc + Rp 

o velocity of P :                         vP     =   vA + vPA     so with the given senses 

:     ωcRc   =   ωaRa - ωpRp 

o torques from Fig 2a :           Ft     =   -Tc / Rc   =   -Tp / Rp   =   Ta / Ra 

http://school.mech.uwa.edu.au/~dwright/DANotes/gears/epicyclic/epicyclicBIG.jpeg


and for the internal central gear : 

o geometry from Fig 2a :       Ra   =   Rc - Rp 

o velocity of P :                         vP     =   vA + vPA     so with the given senses 

:     ωcRc   =   ωaRa + ωpRp 

o torques from Fig 2a :           Ft     =   -Tc / Rc   =   Tp / Rp   =   Ta / Ra 

Substituting for   Ra from the geometric equations into the respective velocity and 

torque equations, and noting that   Rc/Rp   =   zc/zp, leads to the same result for both 

internal and external central gear arrangements. These are the desired relations for the 

three-component element : 

( 2a)         ( ωc - ωa ) zc + ( ωp - ωa ) zp   =   0  

( 2b)         Tc / zc   =   Tp / zp   =   -Ta / ( zc + zp ) 

. . . . in which   zc is taken to be a positive integer for an external central gear, 

and a negative integer for an internal central gear. 

It is apparent that the element has one degree of kinetic (torque) freedom since only 

one of the three torques may be arbitrarily defined, the other two following from the 

two equations ( 2b). On the other hand the element possesses two degrees of kinematic 

freedom, as any two of the three velocities may be arbitrarily chosen, the third being 

dictated by the single equation ( 2a). 

From ( 2b) the net external torque on the three-component element as a whole is :  

        ΣT   =   Tc + Tp + Ta   =   Tc { 1 + zp / zc - ( zc + zp )/zc }     =   0  

                which indicates that equilibrium of the element is assured. 

Energy is supplied to the element through any component whose torque and velocity 

senses are identical. From ( 2) the total external power being fed into the three-

component element is :  

        ΣP   =   Pc + Pp + Pa   =   ωcTc + ωpTp + ωaTa   =   Tc { ωc + ωp zp /zc - ωa ( zc + 

zp )/zc }  

                 =   Tc { ( ωc - ωa ) zc + ( ωp - ωa ) zp } / zc     =   0  

                confirming that energy is conserved in the ideal 

element. 

In practice, a number of identical planets are employed for 

balance and shaft load minimisation. Since ( 2) deal only with 

effects external to the element, this multiplicity of planets is 

analytically irrelevant provided   Tp is interpreted as being the 



total torque on all the planets, which is shared equally between them as suggested by 

the sketch here. The reason for the sun- and- planet terminology is obvious; the arm is 

often referred to as the   spider or   planet carrier. 

Application of the element relations to a complete train is carried out as shown in the 

example which follows. More complex epicyclic trains may be analysed in a similar 

manner, but the technique is not of much assistance when the problem is one of gear 

train design - the interested designer is referred to the Bibliography. 

 

 

EXAMPLE 

An epicyclic train consists of two three-component elements of the 

kind examined above. The first element comprises the external sun 

gear 1 and planet 2; the second comprises the planet 3 and internal 

ring gear 4. The planets 2 and 3 are compounded together on the 

common arm axles.  

Determine the relationships between the kinetic variables external to the train in terms 

of the tooth numbers z1, z2, z3 & z4. 

The train is analysed via equations ( 2) applied to the two elements in turn, together 

with the appropriate equations which set out the velocity and torque constraints across 

the interface between the two elements 1-2-arm and 3-4-arm. 

1-2-arm : 

( ω1 - ωa ) z1 + ( ω2 - ωa ) z2   =   0             from ( 2a) 

T1 / z1   =   T2 / z2   =   - T a2 / ( z1 + z2 )     from ( 2b) 

3-4-arm : 

( ω4 - ωa ) ( -z4 ) + ( ω3 - ωa ) z3   =   0                   in which z4 is a positive integer 

as 

T4 / ( - z4 )   =   T3 / z3   =   - Ta3 / ( - z4 + z3 )       central gear is internal 

Ta2 and Ta3 are the parts of the total external torque on the arm, Ta, which are 

applied individually to the two elements   1-2-arm and 3-4-arm. 

Interface : 

ω3   =   ω2       since the planets 2 & 3 are coupled 

T3   =   - T2       since the planets 2 & 3 are coupled (action/reaction) 

Ta   =   Ta2 + Ta3     as the arm is common to both elements 1-2-arm and 3-4-arm 

Solution :  

The   basic speed ratio, io, of an epicyclic train is defined as the ratio of input to output 



speeds when the arm is held stationary.  

Neither input nor output is defined here - indeed this terminology can be confusing 

with multiple degrees of freedom - so for example select gear 1 as input, gear 4 as 

output.  

It follows that   io   =   ( ω1/ ω4 )ωa=0.  

Solving the three velocity equations and the six torque equations leads to the desired 

relations :  

            Velocities :     ( ω1 - ωa )   =   io ( ω4 -ωa )         where io = - z2 z4 /z1 z3  

            Torques     :     T1   =   -T4 /io   =   Ta /( io - 1 )  

Evidently this train possesses the same degrees of freedom as an individual element. 

Spur gear problems 

In the following problems, assume that : 

o gears with any tooth number up to 120 are procurable ( constraints are more 

severe in practice ) 

o all gears are of steel, to the 20
o
 full depth system unless otherwise indicated 

o mid-range profile shifts apply, where relevant. 

The program Steel Spur Gears should be used to assist solution of asterisked problems, 

and may be used to check longhand solution of other fatigue problems. 

1.  Tooth numbers of certain gears in the epicyclic train are 

indicated; all gears are of the same module. Gear A 

rotates at 1000 rev/min clockwise while E rotates 

anticlockwise at 500 rev/min.  

Determine the speed and direction of rotation of the ring-

gear D and of the arm shaft F. If the power output through each of D and F is 1 

kW, what are the power transfers through A and E?  

[ 371 rev/min anticlockwise; 40 rev/min clockwise; 8.77 kW input; 6.77 kW 

output ]  

  

2.  The arm of the epicyclic train is driven clockwise at 1450 

rev/min by a 5 kW motor. What torque is necessary to lock 

the 33 teeth gear? What is the speed of the 31 tooth gear? Note 

the reduction !  

[ 16.3 kNm clockwise, 2.92 rev/min clockwise ] 

  

3.  The sun wheels A and D are integral with the input 

shaft of the compound epicyclic gear illustrated, and 

http://school.mech.uwa.edu.au/~dwright/DANotes/gears/problems/program.html


the annular wheel C is fixed. The planet wheel B rotates freely on an axle carried 

by the annular wheel F, and the planet E on an axle mounted on the output 

shaft's arm. Given the tooth numbers indicated, find the speed of the output shaft 

when the input shaft rotates at 1000 rev/min.  

[ 524 rev/min ]  

  

4.  In the epicyclic train illustrated, the gear C is fixed 

and the compound planet BD revolves freely on a 

spindle which is coaxial with the input and output 

shafts.  

(a) Show that if   zb ze > zc zd then input and output 

shafts rotate in the same direction.  

(b) 7.5 kW is fed into the input shaft at 500 rev/min, 

losses are negligible, and tooth numbers are sketched. Determine the torque on 

the output shaft.  

[15.5kNm ]  

  

5. Select spur gears suitable for speed ratios of (i) 1/√2, and (ii) π, to four 

significant figures.  

  

6. Determine the practical limits of profile shift on a 6 mm module gear with 19 

teeth. If a profile shift of 0.4 is implemented, what are the dedendum, base, 

pitch, extended pitch and addendum circle diameters of the gear ?  

Evaluate the base pitch and the angle   γ of Fig A.  

[ 103.8, 107.1, 114, 118.8 and 130.8 mm. 17.7 mm, 6.47
o
 ]  

  

7. Derive equation ( 10) from which the contact ratio may be calculated (20
o
 full 

depth system).  

  

8. What is the practical range of centre distance for a pair of 4 mm module spur 

gears with 19 and 35 teeth ? If they are manufactured with profile shifts of 1.5 

mm and 2 mm respectively, evaluate the extended pressure angle and the contact 

ratio.  

[ 108.6 ≤ C ≤ 112.8 mm, 24.47
o
, 1.42 ]  

  

9. Use the design procedure outlined in the Notes to determine gears suitable for a 

speed ratio of √2 ± 0.5 % and a centre distance of 200 ± 1 mm.  

[ 6 mm module, with 27 and 38 teeth, and profile shifts of 0.45 say, for pinion 

and correspondingly 0.38 for wheel ]  

  



10. Evaluate the contact ratio and the fatigue geometric factors I and J for each of 

the following :  

(a)   the pairs 13:35, 23:62 and 36:97 (which approximate the ratio 0.3711 to 

within 0.1%);  

(b)* 23:62 teeth, assuming the minimum practical profile shifts for both gears;  

(c)* repeat (b) but use the maximum practical profile shifts.  

Comment upon the trends suggested by these results.  

  

11. The transmission accuracy level number of a pair of open gears is 6. Further 

particulars of the 25 mm module 300 mm facewidth gears are as follows : 

  number   allowable stresses, MPa   speed, 

  of teeth contact bending rev/min 

pinion 25 1100 290 150 

wheel 55 1000 280 - 

12. What life may be expected of the gears whilst transmitting 1 MW uniformly? [ 

39 khr ]  

Shock loading of the foregoing drive results from unsuspected torsional 

vibration. If the effective application factor is in fact 1.25, what life may now be 

expected? [ 5.4 khr ]  

  

13. *     Two mating gears of commercial quality are to hand with 18 and 56 teeth. 

Their common facewidth is measured as 50 mm and their addendum diameters 

as 83.2 and 233.6 mm. Metallurgical analysis reveals that the expected contact 

and bending stresses of the gears' common material are 1100 and 300 MPa 

respectively.  

Estimate the pair's capacity (kW) for a 10 khr life in a shock-free application in 

which the pinion speed is 300 rev/min. The transmission accuracy level number 

is 6.     [ 9.1 kW ]  

  

14. A gear pair transmits 75 kW with an application factor of 1.5 and reliability of 

99%. Particulars of the commercial 6-accuracy level gears are : 

  number   allowable stresses, MPa   speed, 

  of teeth contact bending rev/min 

pinion 20 1300 180 90 

wheel 37 1250 175 - 

15. Select a suitable module and facewidth for a life of 15 khr.     [ 16, 144 mm ]  

  

16. Details of a pair of commercial gears having a transmission accuracy level of 8 

are as follows : 



  number   allowable stresses, MPa   speed, 

  of teeth contact bending rev/min 

pinion 10 1320 380 200 

wheel 36 1100 360 - 

17. Select a suitable module and facewidth for a design life of 16 khr whilst 

transmitting a uniform 125 kW with a reliability of 99%.     [ 16, 187 mm ]  

  

18. A commercial gear pair having a transmission accuracy level of 8 is required to 

transmit 100 kW in a shockfree application with 99% reliability. The speeds of 

pinion and wheel are 1450 and approximately 470 rev/min. Allowable stresses 

for contact and for bending of the pinion are 1450 and 400 MPa respectively; for 

the wheel 1300 and 350 MPa.  

Select suitable tooth numbers and profile shifts, along with a corresponding 

module and facewidth for a compact pair with a design life of 20 khr.  

  

19. Estimate the life of a gear whose allowable contact stress is 1.2 GPa and which 

undergoes the stress spectrum : 

contact stress   σc   (GPa) 1.0 1.1 0.9 

speed   N   (rev/min)     500     400     300   

duration   t   (hours) 2 1 3 

20. [ 7.9 khr]  

  

21. A pair of 8 mm module, 100 mm facewidth commercial gears is manufactured to 

a transmission accuracy level of 7 and employed in a periodic duty of 1.25 

application factor. The 23 tooth pinion's allowable contact stress is 1.2 GPa at 

99% reliability, the 47 tooth wheel's is 1.1 GPa.  

If power is transmitted to the following cycle, what life may be expected of the 

pair ? 

power   P   (kW) 60 45 35 

pinion speed   N1   (rev/min)     200     150     100   

duration   t   (min) 10 20 30 

22. [ 13 khr ] 

 

 

 



Unit3 

BRAKES 

A   brake decelerates a system by transferring power from it. A   clutch such as that 

illustrated (for the most part) accelerates a system by transferring power to it. The two 

devices in rotary applications are thus very similar as they both transmit torque whilst 

supporting a varying speed difference across them. 

Brakes take a number of forms - for example a system may drive a pump or electric 

generator, so the pump or generator acts as a brake on the system. However the most 

common brakes employ friction to 

transform the braked system's 

mechanical energy irreversibly into 

heat which is then transferred to the 

surrounding environment - see the 

flame generated by this sports car's 

brakes. The friction mechanism is 

convenient since it allows force and torque to be developed between surfaces which 

slide over one another due to their different speeds. One of the sliding surfaces is 

usually metal, the other a special friction material - the   lining - which is sacrificial. 

Wear (ie. material loss) of the lining must be catered for, and the lining usually needs 

to be renewed periodically.  

   

We examine only friction brakes in any detail here - some common embodiements are 

first described . . . . . 

This hydraulically actuated clutch comprises 

a number of discs faced with lining material 

which are connected alternately to input and 

output shafts by torque- transferring splines. 

The 

clutch is 

engaged 

by high pressure oil applied to an annular piston 

pressing the discs against one another while they 

rotate at the different speeds of the two shafts. The 

normal pressure between discs enable them to exert 

friction torque on one another which tends to 

equalise the two speeds. 

  

http://school.mech.uwa.edu.au/~dwright/DANotes/brakes/intro/sportsCarBIG.jpeg


A hydraulically activated   disc brake comprises two opposing pistons each faced with 

a pad of lining material. When the hydraulic pressure is increased the pads are forced 

against the rotating metal friction disc, exerting a normal force at each contact. The 

two normal forces cancel one another axially but cause additive tangential friction 

forces which oppose the disc's motion and decelerate 

it. 

  

A   band brake consists of a flexible band faced with 

friction material bearing on the 

periphery of a drum which may 

rotate in either direction. 

The   actuation force P is applied to the band's extremities through 

an   actuation linkage such as the cranked lever illustrated. Tension 

build-up in the band is identical to that in a stationary flat belt. 

The band cross-section shows lining material riveted to the band. 

Allowance for lining wear is provided - when the rivets start to rub 

on the drum they are drilled out prior to new linings being riveted to 

the band. 

The band brake on the left is destined 

for a fishing trawler winch.  

 

These are   external rigid shoe brakes -

 rigid because the shoes with attached 

linings are rigidly connected to the 

pivoted posts; external because they 

lie outside the rotating drum. An 

actuation linkage distributes the actuation force to the posts thereby causing them both 

to rotate towards the drum - the linings thus contract around the drum and develop a 

friction braking torque.  

The RH brake features improved hinge 

locations and integral posts/shoes.  

 

The two hydraulically actuated rigid shoe 

brakes here are located internal to the drum. 

The LH brake incorporates a rotating cam 

which causes the shoes to expand and the 
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linings to bear on the surrounding drum. The RH brake features two leading shoes, 

enabled by an individual (and more expensive) hydraulic cylinder and piston for each 

shoe.The terms   leading and   trailing are explained 

below.  

 

These rigid external shoe brakes act on the rope 

drum of a mine (cage) winder. The arrangement is 

fail-safe as an electric solenoid disengages the brake 

to allow motion, but in the event of power failure 

the brakes are engaged automatically by the large 

springs visible at the sides of the drum.  

Visible in the photograph are the actuation mechanisms with wear-compensating 

turnbuckles, the electric drive motor on the right, and the cage level indicator on the 

left.  

 

  

This is a   hinged shoe brake - the shoes are 

hinged to the posts. As wear proceeds the 

extra degree of freedom allows the linings to 

conform more closely to the drum than would 

be the case with rigid shoes. This permits the 

linings to act more effectively and reduces the 

need for wear adjustment.  

The commercial unit comes complete with actuating solenoid. 

  

About 5% of the heat generated at the sliding interface of a friction brake must be 

transferred through the lining to the surrounding environment without allowing the 

lining to reach excessive temperatures, since high temperatures lead to hot spots and 

distortion, to   fade (the fall-off in friction coefficient) or, worse, to degradation and 

charring of the lining which often incoporates organic constituents. Thorough design of 

a brake therefore requires a detailed transient thermal analysis of the interplay between 

heat generated by friction, heat transferred through the lining via the surrounding 

metalwork to the environment, and the instantaneous temperature of the lining surface. 

Brake design investigations generally proceed along the following lines : 

  -   The braked system is first examined to find out the required brake capacity, that is 

the torque and average power developed over the braking period. 

  -   The brake is then either selected from a commercially available range or designed 
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from scratch. In the latter case, conservative rather than optimum brake sizing may 

be based upon power densities which experience has shown to be acceptable, thus 

avoiding the difficulties associated with heat transfer appraisal. 

  -   Analysis of the actuating mechanism is necessary to disclose the actuation 

requirements, brake sensitivity, bearing loads and the like. 

 

The following notes consider these aspects for rotating drum brakes only, and go on to 

introduce the effect of a road vehicle's braking control system on the vehicle's stability. 

 

System dynamics 

The braked system must be analysed to throw light on its braking requirements. 

Analysis requires knowledge of 

  -   the system's total energy ( comprising eg. kinetic, gravitational and elastic potential 

) initially, ie. before braking 

  -   the system's final total energy ie. after braking 

  -   the initial and final velocities of the brake drum 

  -   
the desired braking period   Δt, or alternatively the corresponding rotation of the 

drum   Δθ 

  -   the life of the brake lining would also be specified or estimated by the designer. 

During deceleration, the system is subjected to the essentially constant torque   T 

exerted by the brake, and in the usual situation this constancy implies constant 

deceleration too. The elementary equations of constant rotational deceleration apply, 

thus when the brake drum is brought to rest from an initial speed ωo :- 

( 1 )       deceleration   =   ωo
2
/ 2 Δθ   =   ωo/Δt   ;       ωm   =   ωo/2   =   Δθ/Δt  

              where   ωm is the mean drum speed over the deceleration period. 

Application of the work/energy principle to the system enables the torque exerted by 

the brake and the work done by the brake,   U, to be calculated from :- 

( 2 )       U   =   ΔE   =   T Δθ  

              where   ΔE is the loss of system total energy which is absorbed by the brake 

during deceleration, transformed into heat, and eventually dissipated. 



The mean rate of power transformation by the brake over the braking period is :- 

( 3 )       Pm   =   T ωm   =   U / Δt  

              which forms a basis for the selection or the design of the necessary brake. 

 

Linings 

The choice of lining material for a given application is based upon criteria such as the 

expected coefficient of friction, fade resistance, wear resistance, ease of attachment, 

rigidity/formability, cost, abrasive tendencies on drum, etc.  

Linings traditionally were made from asbestos fibres bound in 

an organic matrix, however the health risks posed by asbestos 

have led to the decline of its use.Non-asbestos linings generally 

consist of three components - metal fibres for strength, 

modifiers to improve heat conduction, and a phenolic matrix to 

bind everything together.  

The characteristics of Ferodo AM 2, a typical moulded 

asbestos, are illustrated. The coefficient of friction, which may 

be taken as 0.39 for design purposes, is not much affected by 

pressure or by velocity - which should not exceed 18 m/s. The 

maximum allowable temperature is 400
o
C. 

Linings are attached to shoes either by soft countersunk rivets or by bonding, though 

set-screws and proprietary fixings may be used in the larger sizes.  

In order to withstand the inherent abrasion, mating surfaces should be ferrous with a 

hardness of at least 150 BHN, or 200 if the duty is heavy. Fine grain high tensile 

pearlitic iron is generally suitable. The interested reader should refer to manufacturers' 

publications for further information. 

Having ascertained the braking requirements from the system dynamics, we now wish 

to form some idea of the leading dimensions of a suitable brake.  

Practically achievable power density limitations apply to brakes as they do to other 

mechanical plant such as engines and heat exchangers. For a given size of brake there 

is a limit to the mechanical power that can be transformed into heat and dissipated 

without lining temperatures reaching damaging levels. Brake size is characterised by 

lining contact area,   A, so denoting this maximum safe power density as   Rp we have, 

for a reasonable lining life :- 

( 4 )       Pm /A   ≤   ( Pm /A )critical   ≡   Rp   (kW/m
2
) 

Experience suggests the following values of   Rp for various types of brake in different 

applications.  



  TYPICAL VALUES OF Rp ( kW/m
2
 )   

  type of duty 
cooling 

conditions 

typical 

applications 

spot 

disc 

brakes 

drum 

brakes 

cone 

clutches 

plate 

brakes 

& 

clutches 

  Intermittent 

duty or 

infrequent 

full duty 

applications 

Time between 

applications 

permits 

assembly to 

cool to ambient 

prior to 

actuation. 

Emergency 

and safety 

brakes, safety 

and torque-

limiting 

clutches. 

6000 1800 800 600 

  Normal 

intermittent 

Some cooling 

between 

applications, 

but temperature 

builds up to a 

moderate level 

over a period of 

time. 

All general 

duty 

applications - 

winding 

engines, 

cranes, 

winches and 

lifts. 

2400 600 400 240 

  Heavy 

frequent duty 

where life is 

critical. 

Frequency of 

applications too 

high to permit 

appreciable 

cooling 

between 

applications. 

Presses, drop 

stamps, 

excavators 

and haulage 

gear. 

1200 300 240 120 

  Typical lining pressure range   ( kPa ) 
350-

1750 

70-

700 
70-350 70-350 

 

The table indicates that the improved heat transfer capabilities of disc brakes compared 

to other types enables them to handle greater power densities - per unit area of lining, 

not necessarily per unit volume of brake. All tabulated power densities should be 

treated as indicative rather than absolute maxima; their use with ( 3) and ( 4) enables 

reasonable estimates of required lining areas to be made - optimum designs would have 

to consider thermal analyses, which is beyond the present scope. 

An alternative brake rating procedure is based upon the product of average 

pressure,   pm, over the lining contact area and the mean rubbing speed,   vm, during 

deceleration. This procedure requires knowledge of the coefficient of friction,   μ, so it 



is less useful than ( 4) and is mentioned only because it is commonly used - we shall 

persevere with ( 4). However if   F is the lining contact resultant then :- 

( i)       pm vm   =   ( Fnormal/A ) vm   =   ( Ftangential/μA ) vm   =   Pm/μA   =   Rp/μ  

                  which may be used analogously to ( 4) to determine the necessary minimum 

lining area necessary to dissipate a given power if μ is known. 

If a drum brake has to be designed for a particular system (rather than chosen from an 

available range) then the salient brake dimensions may be estimated from the 

necessary lining area,   A, together with a drum diameter- to- lining width ratio 

somewhere between 3:1 and 10:1, and an angular extent of 100
o
 say for each of the two 

shoes. 

The lining is sacrificial - it is worn away. The necessary thickness of the lining is 

therefore dictated by the volume of material lost - this in turn is the product of the total 

energy dissipated by the lining throughout its life, and the specific wear 

rate   Rw (volume sacrificed per unit energy dissipated) which is a material property 

and strongly temperature dependent as may be seen from the graph above for Ferodo 

AM 2. This temperature dependence may be expressed as :- 

( ii)       Rw   ≅   Rwo exp ( ( lining temperature 
o
C / To ) 

n
 )  

                  where   Rwo ,   To and   n are constant material properties. 

Brake problems 

1. A motor whose inertia is 0.3 kg.m
2
 drives the rope drum of a hoist through a 5:1 

gear reduction. The average diameter, radial thickness and face width of the 

larger gear's rim are   360, 16 and 50 mm. The mass of the rope drum is 120 kg, 

its radius of gyration is 110 mm, and it is equipped with grooves of 250 mm 

pitch diameter, on which is wrapped the hoisting rope whose mass is 0.5 kg/m. 

The maximum extended length of the rope is 60 m.  

A brake is incorporated into the motor shaft. Determine the brake torque and 

average power over the braking period when stopping within 1 m, a load of 1 t 

(1 tonne) being lowered at 3 m/s.         [ 435 Nm, 26.1 kW ]  

  

2. Derive equations ( 13).  

  

3. ( Problems 4-6 are similar ) 



 

4. For each brake, determine the sensitivity, the hinge and drum shaft reactions, 

and the parameters which are not defined in the duty statements. The brakes are 

symmetric, except for the mechanism of Problems 5 & 6; the geometry of 

Problem 6 is identical to that of Problem 5, however the drum rotation is 

clockwise in 5, counterclockwise in 6.  

Duty statements are   [ psi ≡ lbf/in
2
; 1000 lbf/kip ] : 

  problem 3 4 5 6 

  friction coefficient 0.32 0.24 0.3 0.3 

  braking torque - - -   25 kip.in   

  actuation force 1.2 kN -   400 lbf   - 

  
lining mean 

pressure limit 
-   1.0 MPa   150 psi - 

  lining width   28 mm   75 mm - 1.7 in 

Solutions 

  braking torque 231 Nm 2646 Nm 2150 lbf.ft - 

  actuation force - 8604 N - 404 lbf 

  
lining mean 

pressure 
543 kPa - - 125 psi 

  lining width - - 1.7 in - 

  sensitivity 1.337 1.117 1.143 1.101 

  hinge reaction - left 462 N 8900 N 6540 lbf 4720 lbf 

  
hinge reaction - 

right 
2716 N 8900 N 4130 lbf 5925 lbf 

  drum shaft reaction 2323 N 0 2510 lbf 1290 lbf 

 

  

7. Design an external rigid shoe brake for the hoist of Problem 1, given that 

braking occurs twice a minute, that the lining is expected to reach a temperature 

of 300
o
C, and that the required lining life is 5 khr. A design factor of 1.2 should 

be applied to the system energy loss of Problem 1.  

  



8.  A skip hoist for lifting bulk 

material, consists of two identical 

buckets or   "skips" connected by a 

wire rope which passes around a 

motor- driven head pulley. The 

loaded skip is partially 

counterbalanced by the empty skip. 

The head pulley is equipped with 

the brake illustrated, which is so 

arranged that in normal operation 

the brake is disengaged by an electric solenoid. In the event of an electrical 

power failure however, the brake is automatically engaged by a steel 

compression spring.  

Determine the initial compression of the spring necessary to arrest the loaded 

skip, falling at 2 m/s, within 2 s of brake engagement.  

The inertia of the pulley/drum is 0.5 t.m
2
, the coefficient of friction for the brake 

may be taken as 0.3, and the spring, which is made from 10 mm diameter stock, 

has 10 active turns of 60 mm mean coil diameter.       [ 27 mm]  

  

9.  At first glance, a sprag type of over-running, uni-directional 

clutch looks rather like a cylindrical roller bearing in that it 

consists of two concentric circular rings. However instead of 

having cylinders between these, there is a series of closely 

spaced   "sprags" or cams, similar to the one sketched. These fit 

loosely for one direction of relative ring rotation to allow "free-

wheeling". Light springs keep the sprags in touch with the rings. 

A reversal of relative rotation causes a rocking of the sprags and a 

tightening-up so that a high torque may be carried.  

The two lines drawn from the centre O of the rings to the centres of curvature 

O1 and O2 of the sprag surfaces at the contact points, make a small angle   α with 

one another.  

Draw the free body of a sprag, perhaps exaggerating the angle α for clarity, and 

obtain graphically the relative magnitudes and directions of the two contact 

forces with their normal and tangential components.  

Derive approximate equations for the angles betwen the forces and their normal 

components as functions of the angle α and the ring contact radii r1 and r2, and 

find the maximum value of α in terms of the coefficient of friction μ if slipping 

is not to occur.       [ αmax ≅ μ ( 1 - r1/r2 ) ]  

  

10. The centre of mass of a vehicle lies at   cF = h = 1/3  

( a)   Plot the vehicle braking characteristic along with representative loci of 

constant adhesion coefficient and of constant decelerations;  

( b)   The vehicle is equipped with proportional braking of 1:4 (rear:front). What 

is the maximum deceleration that can be achieved safely, and the corresponding 

necessary adhesion coefficient ?       [ 0.4]  



( c)   Repeat (b) if the normalised rear braking force is limited to 0.06.       [ 

0.765]  

  

11.  The centre of mass of a 1.2 t vehicle lies midway 

between front and rear axles, at a height above road level 

of one quarter of the wheelbase (the distance between 

front and rear axles). The vehicle is equipped with 

hydraulically operated, symmetric brakes as shown, the 

front and rear sets being identical except for lining width 

and hydraulic cylinder diameter. 

Further details are :-   Front     Rear   

      hydraulic cylinder diameter, mm 29 20.5 

      maximum hydraulic pressure, MPa 5.5 4 

12. The friction coefficient between lining and drum is 0.4 and the tyres are 640 mm 

diameter.  

( a)   Criticise the safety of this braking arrangement.  

( b)   Determine the maximum vehicle deceleration that may be obtained, and 

the tyre-road adhesion coefficient necessary to achieve it.       [ 7.3 m/s
2
, 0.79]  

( c)   Calculate the maximum value of the average lining pressure if the front and 

rear lining widths are 60 and 40 mm respectively.       [ 1.34 MPa]  

  

13. Repeat Problem 5 with the shoes pivoted to the posts at   b = 11 in, θG = 80
o
.  

The sensitivity expression for a pivoted shoe is more complex than that of a rigid 

shoe - the   m & n parameters are no longer appropriate. One way to proceed is 

to denote   ' ≡ d/dμ, whereupon   α' and   β' follow from ( 6c) and ( 11). Call the 

scalar ratio between the pressure components   ν and evaluate it from ( 11) as   ν 

= Nc /Ns = pc /ps = - β Js /β Jc .  

Thereafter form the vector   Jo ≡ Js + ν Jc and hence   ν' = - δΔ.β' Jo /β Jc . It 

follows that   η = μr Jo[3] / αJo . Differentiating this last expression and inserting 

into ( vii) leads to the expression for sensitivity.  

[   T = 2160 lbf.ft;   w = 1.67 in;   S = 1.148;   RHL = 3610 lbf;   RHR = 1400 

lbf;   RO = 2475 lbf ]  
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